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a b s t r a c t

Modern industrial-scale wind turbines are nonlinear systems that operate in turbulent environments. As
such, it is difficult to characterize their behavior accurately across a wide range of operating conditions
using physically meaningful models. Customarily, the models derived from wind turbine data are in
‘black box’ format, lacking in both conciseness and intelligibility. To address these deficiencies, we use a
recently developed symbolic regression method to identify models of a modern horizontal-axis wind
turbine in symbolic form. The method uses evolutionary multiobjective optimization to produce succinct
dynamic models from operational data while making minimal assumptions about the physical properties
of the system. We compare the models produced by this method to models derived by other methods
according to their estimation capacity and evaluate the trade-off between model intelligibility and ac-
curacy. Several succinct models are found that predict wind turbine behavior as well as or better than
more complex alternatives derived by other methods. We interpret the new models to show that they
often contain intelligible estimates of real process physics.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

As wind energy grows across the globe and new offshore wind
turbine installations encounter new operating environments, the
models that inform the design and control of these multimillion-
dollar machines become increasingly important. Typical multi-
megawatt wind turbines exhibit nonlinear behavior and are subject
to wind (and sometimes wave) disturbances that are often hard to
estimate. These properties make the simulation of their dynamics
not only challenging but also site-dependent, because of the in-
fluence of wind, wave, and foundation characteristics. Accordingly,
the first-principles models of wind turbines, such as the one
embedded in the aero-hydro-elastic simulation tool FAST [1], are
prone to cumulative discrepancies between prediction and reality.
These models are also computationally expensive to run because of
their fairly comprehensive representation of wind turbine dy-
namics. Although the use of engineering models is fundamental to
the structural design and loads analysis process, model-based
controllers preferably rely on a customized model of the real sys-
tem in the field, rather than a first-principles model that may miss
key elements present in the real system [2].

As an alternative to potentially inaccurate and computationally
expensive first-principles models, empirical models of wind tur-
bines are obtained from experimental data to provide a customized
representation of the wind turbine. These models are usually in the
form of auto-regressive moving-average (ARMAX) models [2e5],
neural networks [6], or fuzzy logic models [7], among others, to
provide the structural flexibility for adapting the model according
to the measured observations. Although these empirical models
provide an effective means of estimation/prediction, they have the
major drawback of lacking transparency about the physics of the
process [8]. This lack of transparency obscures the knowledge of
the process that is gained through their development. Ideally, the
model should not only be accurate, but intelligible so that the user
acquires the insight attained through the model's development. A
well-formedmodel serves two purposes: (i) it improves knowledge
of the underlying dynamics of the system; and (ii) it improves the
ability of the wind turbine controller to extract power and mini-
mize loads on the turbine.
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In order to improve the intelligibility of adapted models,
empirical models in the form of symbolic equations can be
formulated by symbolic regression [9,10]. In symbolic regression,
the process variables, inputs, and parameters (constants) are
treated as symbols and integrated as blocks to form candidate
model structures. Free of restrictions from the form (structure), the
search is typically conducted by genetic programming (GP) for
candidate models having the best-fit outputs to the measured ob-
servations [9]. However, in the absence of a presumed model
structure and guided only by the prediction error (i.e., the differ-
ence between the modeled and measured outputs), symbolic
regression often yields illegible, albeit accurate, models that do not
convey any of the physics of the process. The method proposed for
modeling here safeguards against this potential shortcoming by
two innovations. First, it uses a novel GP method known as
epigenetic linear genetic programming (ELGP) that combines the
flexibility of stack-based GP representations with an epigenetic
encoding to allow for topological search of the candidate model
structures, leading to less complex and more accurate results than
traditional GP [11,12]. Second, it uses an evolutionary multi-
objective optimization (EMO) framework [13] that includes the
complexity of the model as an objective in order to yield accurate
models that are as intelligible as possible.

In this paper we evaluate the applicability of the proposed ELGP
method in identifying wind turbine models based on experimental
data collected in normal closed-loop operation from the three-
bladed Controls and Advanced Research Turbine (CART3), a tur-
bine maintained by the National Renewable Energy Laboratory
(NREL). The paper is organized as follows. First, we present a brief
overview of wind turbine mechanics. We then review previous
system identification work. Next, the problem formulation as
sought by multiobjective optimization is presented, followed by a
description of the proposed ELGP method. We then detail the wind
turbine identification procedure and analyze results pertaining to
local and global models of the wind turbine. The paper concludes
with a discussion of the intelligibility of the identified models as
they inform the physics of the process.
2. Wind turbine mechanics

Identification of wind turbine models is a difficult undertaking
because of the many layers of nonlinearity governing their
behavior. Moreover, modern horizontal-axis wind turbines
(HAWTs) are controlled using variable-speed and variable-blade
pitch operation, further complicating the dynamics. Consider for
instance the steady-state aerodynamic rotor torque (QR) and thrust
(TR) generated by the rotor operating in freestream wind speed V,
defined by:

QR ¼ 1
2
rpR3Cqðl; bÞV2 (1)

TR ¼ 1
2
rpR2CT ðl; bÞV2 (2)

where the tip speed ratio l ¼ UR/V relates the rotor speed U to the
wind speed V, r is the air density, R is the rotor radius, b is the pitch
angle of the blades (assumed pitching collectively). Cq and CT are
the torque and thrust coefficients, respectively, defining the cor-
responding generated lift as functions of l and b. The overall Cq is a
function of local aerofoil drag and lift coefficients Cd and Cl, local
incidence angle with the wind, f, and local tip speed ratio lr,
defined by the strip theory calculation of Cq, as:
Cq ¼
�
8
.
l3
� Zl

lh

sin2
fðcos f� lr sin fÞðsin fþ lr cos fÞ

�
1

� Cd
Cl

cot f
�
l2r dlr

(3)

Because it is difficult to obtain the lift and drag coefficients at
each position along the blade due to small inconsistencies in
fabrication and local shape deflections, they are often estimated
empirically [14]. The inaccuracy of estimated nonlinear coefficient
surfaces Cq and CT, compoundedwith themeasurement uncertainty
and stochasticity of V, impedes prediction of the aerodynamic
torque and thrust response of the system.

Control actions are limited to actuating the collective pitch b, the
generator torque TG, and the yaw angle j. Because of the highly
nonlinear nature of the wind turbine behavior, a pitch action of the
same magnitude may result in very different aerodynamic forces
depending on the instantaneous wind speed and rotor speed,
requiring the employment of gain scheduling for pitch control [15].
In addition to aerodynamic nonlinearities, the turbine has low-
frequency periodic excitations induced by the rotating blades at
once-per-revolution (1P) and thrice-per-revolution (3P) that are
normally within the same frequency range as the fore-aft (FA) and
sideeside (SS) natural frequencies of the tower, requiring the added
provision of avoiding dynamic coupling between these excitations
and that of the pitch control that affects U. Similarly, the first mode
of the wind turbine drivetrain can be excited by the generator
torque commands, so the generator control must account for this
fundamental design objective as well. From the above anecdotes it
follows that an accurate model of the wind turbine is essential for
designing a reliable controller. This need for model accuracy mo-
tivates data-based modeling approaches that can account for
turbine-specific observations and provide confident estimates of
wind turbine behavior.
3. Related work

Most system identification attempts at modeling wind turbines
have focused on producing linear time-invariant (LTI) models via
ARMAX models [2,4] or modified forms of closed-loop subspace
identification (SSID) [3,5]. Although LTI models seem to be effective
in characterizing simulated wind turbine behavior at specific
operating wind speeds [2,4], they provide only localized repre-
sentation. As a remedy, SSID methods have been extended to ac-
count for the time-varying, nonlinear dynamics of the wind
turbines to form global models. For example, Van der Veen [5]
showed that Wiener and Hammerstein systems could be used to
identify global wind turbine dynamics by providing the model with
the nonlinear aerodynamic torque and thrust relations (Eqs. (1) and
(2)), as well as the surface functions for (Cp) and (CT) that vary with
the tip speed ratio l and pitch angle b. This approach, however,
requires good knowledge of these two surface functions, which rely
on first principles. Another approach to global modeling associates
the nonlinearities with the azimuth angle of the rotor and uses a
linear parameter-varying (LPV) model to conduct closed-loop
identification of the wind turbine dynamics [3]. In this case, the
dynamics of the turbine are assumed to vary periodically, so the
matrices of the state space model are defined in terms of the azi-
muth position of the rotor. This approach provides good predictions
of the hub moments at the rotor and tower top motion.

The above approaches, albeit in ‘black-box’ form, are attractive
because of their incorporation of expert knowledge in modeling
some of the nonlinearities and for their accommodation of control



Fig. 1. The wind turbine mechanics considered for identification.

1 Source code available from http://www.github.com/lacava/ellen.
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design. Ideally, however, the system identification approach has the
flexibility to work when the aerodynamic properties of the wind
turbine and/or the sources of its nonlinear behavior are not well-
characterized. In addition, the methods above used special oper-
ating conditions in which the input actions (e.g., b, TG) are per-
turbed in a pseudo-random binary fashion to minimize the
correlation of output and input noise in closed-loop operation. This
approach is problematic because it is not always possible for a
control engineer to apply excitation signals to the operating tur-
bine, nor is it straightforward to persistently excite the system
adequately [2]. For this reason we focus our identification on
normal operating data.

There have been some attempts to construct wind turbine
models under similarly reduced sets of assumptions, althoughmost
focused solely on power prediction, e.g., from wind measurements
[16] or from low resolution supervisory control and data acquisition
(SCADA) data [6,17]. Kusiak [17] demonstrated that a neural
network model and a controller designed via evolutionary
computation could improve simulated power output in below-
rated conditions. A drawback of this approach is that the models
need to be periodically regenerated to continue to perform well,
suggesting an overfitting scenario. The method we propose differs
from typical datamining in that it precludes structural assumptions
for the model and focuses on the derivation of simple, explicative
models that are valuable for their intelligibility in addition to their
estimation capacity.

4. Problem statement

The underlying assumption of symbolic regression is that there
exists an analytical model of the system that would generate the
measured observations y(tk) at the sample times tk ¼ t1,…,tN under
the input, u(t), as:

yðtk;uÞ ¼ byðtk;M�ðx;u;Q�ÞÞ þ n; k ¼ 1;…;N (4)

where by is the modeled output, n represents measurement noise in
y, x ¼ [x1,…,xn]T is the vector of state variables, and M*(x,u,Q*)
denotes the correct model form embodied by the correct parameter
values Q*, written M* hereafter for brevity. In the search for the
correct model formM*, GP typically attempts to solve the problem:

minimize f ðMÞ subject toM2S (5)

where S is the space of possible models M, and f denotes a mini-
mized fitness function. Given that it is impractical to exhaustively
search S, the model found to minimize f(M), denoted bM , may only
be locally optimal, and because M* is not known, it is possible thatbMsM�. For practical purposes it is assumed that a suboptimal
model can adequately represent the process. Typically, a single
fitness function quantifies the difference between the target output
y and a candidate output by; however, there is often more than one
objective to consider for evaluating the model, in which case the
problem becomes:

minimize fjðMÞ; j ¼ 1;…; J
subject toM2S

(6)

The multiple objective function f ¼ [f1…fJ] would ideally yield a
set of nondominated solutions ~M ¼ f ~M1…

~Mng, comprising the set
of solutions that are Pareto-optimal in S, where model dominance
is defined as:

Definition: Model M1 dominates M2; i.e., ðM13M2Þ if
fj(M1) � fj(M2)cj and fj(M1) < fj(M2) for at least one j.

In lieu of an exhaustive search of S, the goal of EMO is to return
a set of modelscM as close to the Pareto-optimal set ~M as possible. It
may be easier to represent an arbitrary set of data by a complex
model, but it is more difficult to understand and generalize the
information content of such a model. Therefore, the solutions from
the searchmust provide a balanced trade-off between accuracy and
complexity. Population-based optimization methods like GP are
well-suited to address the conflicting objectives of accuracy and
conciseness because the solution set cM offers multiple candidate
models for approximating ~M. In the following sectionwe describe a
recent symbolic regression method designed to address such a
trade-off that is used to conduct the identification of the wind
turbine models in this paper.

5. Proposed method

In symbolic regression, the search for candidate models is con-
ducted by GP, whereby a population of computer programs that
produce models of the process are evolved. Mathematical building
blocks compose the genotype of each program, which is optimized
by an evolutionary algorithm. The optimization process, shown in
Fig. 2, starts with randomly constructed programs that are
repeatedly assessed for their fitness and selectively recombined
and mutated until an adequate solution is produced.

5.1. Epigenetic linear genetic programming

In comparison to system identification methods that presume
fixedmodel structures, symbolic regression can be computationally
expensive. Furthermore, when guided solely by an error metric, it
can yield unwieldy equations that are void of physical meaning. To
address these potential shortcomings, we have introduced a sym-
bolic regression method known as ELGP1 that has been shown to
outperform GP on several benchmark regression problems in terms
of the conciseness of the developed models, their fitness

http://www.github.com/lacava/ellen


Fig. 2. Block diagram of ELGP. The typical GP steps are shown on the left. After fitness
evaluation and before selection, the population undergoes an iteration of epigenetic
hill climbing, represented by the block on the right.
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convergence, and efficiency of the search [11,12]. This method has
two salient features that improve its performance: (i) it uses linear,
stack-based programs to represent equations, and (ii) it conducts
local search of the space of model structures to both improve the
fitness and reduce the complexity of models. We use ELGP in an
EMO scheme to maintain and optimize a population of solutions of
varying complexity and accuracy.
5.1.1. Model representation
In typical GP systems, equations are represented as parse trees

[9] in which the nodes of the tree are mathematical operators
(e.g., þ, �, *, sin) and the leaves are variables and constants (lit-
erals). In contrast, we represent equations by post-fix notation in
linear programs that are evaluated using stacks [18,19]. For
example, the equation (x þ y) can be represented by the program
i ¼ ½ x y þ �. The advantage of the proposed stack-based GP sys-
tem representation is its guarantee of syntactic validity for arbitrary
sequences of instructions. It also allows instructions to be silenced
or activated in a genotype without invalidating the program's
ability to execute. This “syntax-free” property stands in contrast to
tree-based representations that can become syntactically invalid
due to changes to instructions and literals.

The syntactic robustness of the stack-based approach is ach-
ieved mainly by ignoring the execution of instructions that have an
arity larger than the current size of the stack. For example, if a þ
operator attempts to execute and there is only one element on the
stack, it does nothing. Furthermore, we base a program's behavior
only on the top element(s) of the stack after execution, making
genotypes safe with respect to unused arguments. The flexibility of
this representationmeans that the genotypes of the following three
programs i1, i2, and i3 all produce the identical model (x þ y):

i1 ¼ ½ x y þ � 0 M1 : ðxþ yÞ
i2 ¼ ½ x y þ � � = � 0 M2 : ðxþ yÞ

i3 ¼ ½ z þ x = x y þ � 0 M3 : ðxþ yÞ
(7)

The executions of �, *, and / in i2 are ignored due to insufficient
stack size. In i3, the last element of the executed stack, (x þ y), is
taken as the model.
5.1.2. Epigenetic encoding
In GP, the role of epigenetics, that is, regulation of gene ex-

pressions, is traditionally ignored, despite the fact that the
expression of biological genes is highly regulated and that epige-
netic processes provide several evolutionary benefits [20,21]. In
contrast, we take advantage of the stack-based representation to
introduce epigenetic information by including a boolean condition
on each element in an individual's genotype. When evaluated
together, the expressed program, i.e., the model, is produced by
executing instructions that are on (active) and ignoring the in-
structions that are off (inactive). In this light, the genes that were
ignored in programs i2 and i3 in Eq. (7) provide local solutions to
explore in the search space, making it possible to alter the topology
and values of the resultant model. For example, program i3 can
admit several models via epigenetic transformations, including:

i3/i03 ¼
�
1 1 0 0 0 1 1
z þ x = x y þ

�
0M0

3 : ðzþ yÞ

i3/i
00
3 ¼

�
1 1 1 1 0 0 0
z þ x = x y þ

�
0M

00
3 : ðz=xÞ

i3/i
000
3 ¼

�
1 0 1 1 0 1 1
z þ x = x y þ

�
0M

000
3 : ðz=xþ yÞ

(8)

Similarly, program i2 in Eq. (7) admits the models (xþ y), (x� y),
(x * y), and (x/y) via epigenetic transformations.
5.2. Evolutionary multiobjective optimization

We use three objectives to drive evolutionary pressure during
optimization: variance accounted for (VAF), model complexity, and
the age of the program in the population. The first two objectives
are designed to achieve model accuracy and simplicity. The third
objective is used to prevent premature convergence. The three
objectives are described in more detail below.

� VAF: We assess the accuracy of each candidate program i using
the VAF metric, which characterizes the normalized variance of
the prediction error as:

VAFðiÞ ¼ max
�
0;

1� varðy� byÞ
varðyÞ

�
� 100 (9)

Equation (9) is transformed into a minimized objective function as
fVAF(i) ¼ 1�VAF(i)/100.

� Model Complexity: There are several ways to represent the
complexity of a model. For example, one can count the number
of nodes in the parse tree, or calculate the order of a Chebyshev
polynomial fit to the model's output [22]. Here, we account for
model complexity by assigning component function non-
linearities to genotype components [23]. Given the following
active genotype ga ¼ � ga1 … ga[

	
for program i, the

complexity C(i) is defined as:

CðiÞ ¼
X[
q¼1

c
�
gaq
�

(10)

with the component function nonlinearities defined as:

cðgaÞ ¼

8>><>>:
4 : ðga ¼ logÞ∨ðga ¼ expÞ
3 : ðga ¼ sinÞ∨ðga ¼ cosÞ
2 : ðga ¼ =Þ
1 : otherwise

(11)

� Age: Age was originally proposed as a way to layer populations
during evolution [24] and later proposed as an objective in a
multiobjective scheme [25]. The age of a model in the
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population is the number of generations since its oldest ancestor
was created. To create age stratification, we introduce a new
individual with age 0 to the population each generation. The use
of age as an objective protects younger models from being
dominated by older ones that are more fit and/or less complex.
Furthermore, because younger individuals dominate older ones
that may be otherwise equivalent, the introduction of age as an
objective pressures the models to improve in fitness and/or
complexity with increasing generations, which helps avoid
premature convergence.

In our implementation, selection for recombination and muta-
tion is random, meaning all models in the population have the
same chance to be selected to produce offspring regardless of their
fitness. During this phase, a portion of the population produces
children through single point crossover (the recombination of two
programs into two new programs) and another portion goes
through uniform mutation, in which small changes are made
throughout the genome. During recombination and mutation, we
create a number of children equal to the overall population size. In
addition, a new individual is created each generation as a means of
random restart.

The role of the objective functions is to choose the models that
survive in the population. Therefore, at the end of each generation,
environmental selection is conducted according to the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [26] to reduce the size P of
the set consisting of the current population and the newly created
individuals down to the original population size N. This algorithm
uses two measures to perform this reduction: i) Pareto strength of
an individual, S(i), which is the number of individuals equal to or
dominated by i, divided by P þ 1, and ii) a density estimate D(i) < 1,
based on the inverse of the distance to the k-th nearest neighbor
[27] of i in objective space (in this case the objectives are normal-
ized between zero and one). These metrics are used to define a
fitness value F(i) that combines the total strength S of the in-
dividuals j2P that dominate i with density estimate D(i):

FðiÞ ¼
X

j2P;j3i

SðjÞ þ DðiÞ (12)

Every nondominated solution is first copied to the new popu-
lation. If the new population size is smaller than N, individuals are
added in order of lowest F(i). If the population is larger than N, i.e.,
there are more than N nondominated solutions, individuals are
removed iteratively based on D(i). For the latter scenario, the use of
D(i) for selection helps preserve the range and spread of solutions
along the Pareto front.

It is important to guarantee that all solutions that are succinct
and accurate are saved during optimization. With this in mind, an
archive is kept updated each generation that contains all non-
dominated individuals according to only the metrics of VAF and
model complexity. This archive provides the solutions that are
explored later in this paper.
Fig. 3. Mean wind speeds for the 5 min data sets that comprise the training and
validation sets. The bottom dotted line indicates the cut-in speed and the regions of
turbine operation are marked. Bars indicate the standard deviation of the wind speed.
5.3. Epigenetic learning and evolution

In order to explore local variants of programs by epigenetic
adaptation, we implement an epigenetic hill climbing step each
generation. During this step, a program's epigenome is uniformly
mutated with a probability of 10% at each gene. The mutation flips
the binary value of the epiline at the gene, thus activating or
silencing that gene. The model resulting from the epigenetic
changes i / i0 is then evaluated to determine whether i should be
updated. Lower-complexity programs with equivalent VAF are
accepted, giving the following condition:
pass ¼ ðfVAFði0Þ< fVAFðiÞÞ∨ððfVAFði0Þ ¼ fVAFðiÞÞ∧ðCði0Þ<CðiÞÞÞ
(13)

If the epigenetically mutated individual i0 does not pass Eq. (13),
the changes are discarded and i is kept in the population. Otherwise
i is replaced with i0.

6. System identification of CART3

The proposed method is evaluated in application to experi-
mental data from the CART3 system. NREL's CART3 is instrumented
with numerous sensors to make the identification of various sys-
tem models possible. The nature of experimental data available
from this system, including its instrumentation, data collection
procedure, and control system, is described first. We then describe
the settings used for ELGP, including general and problem-specific
settings, followed by the types of models considered for identifi-
cation. We also utilize other system identification approaches to
benchmark the ELGP results.

6.1. CART3 system

The CART3 is a 600 kW wind turbine, down-rated to 550 kW,
that acts as a test bed for field research at the National Wind
Technology Center. It is a three-bladed machine that operates with
collective pitch and variable speed control. The CART3 has been
instrumented extensively [28] so that data-driven models of the
turbine can be established. Among the variables measured are the
generator speed u, rotor speed U, pitch action b, generator torque
command TG, tower top acceleration in the fore-aft ð€xFAÞ and
sideeside ð€xSSÞ directions, tower moments in the fore-aft (MFA) and
sideeside (MSS) directions, and measured power P, as shown in
Fig.1. In addition, an estimate of V is obtained from ameteorological
tower located upwind of the turbine. Wind measurements are
notoriously uncertain and although methods exist to obtain a
better estimate of V [5], they assume good knowledge of CT and
rotor inertia, which are assumed unknowable in our modeling
exercise.

To understand the experimental results obtained from the
CART3, the controllers used by this system [15,29] are briefly
reviewed. The system consists of separate torque and pitch con-
trollers. At wind speeds below rated-power conditions and above
cut-in (Region 2 in Fig. 3), the blade pitch b is held constant at an
estimated optimum while the generator torque TG is adjusted
proportionately to u2 to achieve a theoretical maximum power
coefficient CP. Conversely, at wind speeds above rated-power
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conditions (Region 3 in Fig. 3), TG is held constant and the blade
pitch b is adjusted by a proportional plus integral (PI) controller to
maintain the reference generator speed at the rated power. As such,
both closed-loops rely on the accuracy of the model representing
the generator speed u in terms of the corresponding control effort,
as the sole input to both systems. In addition to controlled ad-
justments, b demand is filtered at the tower's first FA and SS modal
frequencies to avoid excitation and TG is filtered to add damping to
the drivetrain's first torsional natural frequency. Although the
control system is equipped to measure €xFA and €xSS for damping
tower acceleration by adjusting b [15,28], this control strategy was
not used during these experiments.

6.2. Identification procedure

For system identification, we used operating data from 14
different 5 min operating periods. The data were collected at
400 Hz and down-sampled to 20 Hz before system identification.
The data corresponded to normal operating conditions associated
with wind speeds ranging from 2.2 to 25.4 m/s, as shown in Fig. 3,
including several start-up and shutdown events. We performed
local model identification on each data set separately as well as
global identification on the entire combined set (70 min of data).
During identification, 30% of the data were chosen randomly from
the set to be withheld for validation.

Models were obtained for u, U, MFA, MSS, and P using ELGP with
the settings shown in Table 1.We considered three types of models:
static models (SMs), in the form ofM(u,Q), first-order discrete-time
models (DTMs), in the form of Mðbyðtk � 1Þ;uðtkÞ;uðtk � 1Þ;QÞ, and
first-order DTMs for one-step look-ahead predictions (DTM-LAs), in
the form of M(y(tk�1),u(tk),u(tk�1),Q). The main difference be-
tween DTM and DTM-LA forms is their reliance on past predictions
versus experimental data. As such, DTMs evaluate the effectiveness
of ELGP in a simulation-based environment, in which the output is
generated entirely according to the past estimated outputs,
whereas DTM-LAs evaluate the scenario of the outputs estimated
according to the past values of the measured outputs. The constant
values Q were initialized as ephemeral random constants [9]
picked uniform-randomly from the range [�10, 10]. They were
then optimized across the population each generation using a
stochastic hill climbing algorithm [30]. The hill climber perturbed
all constant values in the active genotype by Gaussian noise with a
standard deviation equal to 10% of the value of the constant. These
changes were kept if they resulted in a lower fVAF for the individual.
To prevent the search from focusing on constant optimization, and
considering the insensitivity of the fitness metric fVAF to linear
transformations of the model output, the variables and outputs
were scaled prior to adaptation, for example by rated torque, rated
power, or cut-out wind speed.
Table 1
Symbolic regression settings.

Setting

Population size
Crossover/mutation
Program length limits
Ephemeral random constant range
Termination criterion
Function set
Output

U
u

MFA

MSS

P

A key advantage of symbolic regression is feature selection: the
ability to select the variables to be considered in the model. We
expect this feature to be instrumental in delivering parsimonious
model forms that more clearly relate process inputs to model
outputs as compared to the traditional system identification
methods that are void of this capacity. In this regard, the models
produced for global identification were compared to several model
types obtained in the form of multiple regression, 20th-order auto-
regressive exogenous (ARX) models, and nonlinear ARX neural
networks (NARX-NN). The NARX-NN contained 10 hidden layers
and the weights were trained using back-propagation with the
LevenbergeMarquardt algorithm.

7. Results

The performance of the identified local models by ELGP is
summarized in Table 2. The results correspond to the final model
with the maximum VAF from training. The results indicate that the
accuracy of the models of U, u, and P is excellent in all cases except
for V ¼ 18:0 m=s, where the response of the system was flat (i.e.,
var(U) < 5e�4), obscuring the dynamics. The DTM model has a
better performance for this case. The other two models, MFA and
MSS, produce generally accurate outputs, but not as accurate as the
other three models. For illustration purposes, the outputs of these
two models are compared to their counterparts in the test data in
Figs. 4 and 5 in both time and frequency domains. The results
indicate that the peak frequencies are captured by the model,
including the first tower FA bendingmode atz0.88 Hz. As tomodel
formulations, the DTM forms are slightly more accurate than the
SM form for U, u, and P but are similar for the other cases. The
overall accuracy of SM and DTM is significantly different only in
representing P on training data, according to a Wilcoxon rank sum
test (p ¼ 0.041).

The performance of global models is summarized in Table 3,
where their accuracy is compared with other models commonly
reported in the literature. Specifically, the accuracy of SM and DTM
forms is compared to that of models in the form of multiple
regression and 20th order ARX models. The accuracy of the DTM-LA
form is compared to that of a NARX-NN. The results in Table 3
indicate excellent accuracy of the models of U, u, and P obtained
by ELGP, and the lower accuracy of the models of MFA and MSS, as
was also observedwith the local models in Table 2. As with the local
models, a comparison of the outputs of thesemodels to data in both
time and frequency domains, shown in Figs. 6 and 7, indicates ac-
curate representation of low-order dynamics and the peak fre-
quencies. The results in Table 2 also indicate the better accuracy of
the SM and DTM models generated by ELGP than that of the linear
regression or the ARX model forms. The accuracy difference is
particularly pronounced in the MFA and MSS models as represented
Value

2400
80/20%
[10, 100]
[�10, 10]
2e12 (local)/1e13 (global) gene evaluations
{þ, �, *, /, sin, cos, exp, log}
Dependent variables

{V, b, TG, t}
{V, b, TG, t}
{V, b, TG, t, l, €xFA , €xSS }
{V, b, TG, t, l, €xFA , €xSS , j }
{V, b, TG, u }



Table 2
Performance of local models generated by ELGP using SM and DTM model formu-
lations. Results are categorized by the mean wind speed ðVÞ of the corresponding
5 min data set.

Training/validation VAF (%)

Vðm=sÞ U u MFA MSS P

SM
4.5 m/s 99.3/99.2 99.4/99.4 97.5/97.3 95.1/94.5 99.8/99.7
7.1 m/s 97.0/96.9 98.0/97.9 80.4/79.1 86.6/85.4 99.9/99.9
7.9 m/s 99.9/99.9 99.8/99.8 80.2/79.1 85.8/85.6 100.0/100.0
8.9 m/s 99.9/99.9 99.8/99.8 90.5/90.3 89.9/89.3 100.0/100.0
9.5 m/s 99.6/99.6 99.3/99.3 83.8/83.7 81.9/81.1 99.8/99.8
10.6 m/s 99.8/99.9 99.7/99.7 91.3/90.9 87.8/87.7 99.8/99.8
10.9 m/s 99.7/99.7 99.7/99.6 92.0/92.0 82.7/82.7 99.8/99.8
12.3 m/s 98.6/98.5 98.1/98.0 79.0/78.9 73.2/71.8 99.4/99.4
14.2 m/s 99.9/99.8 99.8/99.8 95.9/95.9 73.2/73.4 99.8/99.8
16.0 m/s 99.1/99.1 99.0/99.1 94.2/94.2 85.0/83.5 99.9/99.9
16.3 m/s 97.8/97.8 97.1/97.0 71.8/71.0 82.7/82.6 99.6/99.5
17.0 m/s 99.6/99.6 99.5/99.5 83.3/83.0 83.8/83.6 99.9/99.9
18.0 m/s 18.2/17.0 21.8/22.3 52.7/51.0 70.2/70.8 72.3/72.4
18.9 m/s 99.9/99.9 99.9/99.9 92.3/92.7 96.6/97.0 100.0/100.0
DTM
4.5 m/s 99.4/99.4 99.4/99.3 97.6/97.4 95.3/95.3 99.8/99.8
7.1 m/s 99.2/99.2 99.4/99.3 80.8/80.9 93.2/92.1 99.9/99.9
7.9 m/s 100.0/100.0 100.0/100.0 88.2/89.1 92.3/92.0 100.0/100.0
8.9 m/s 100.0/100.0 100.0/100.0 97.1/96.9 95.9/96.0 100.0/100.0
9.5 m/s 99.8/99.8 99.7/99.7 91.3/90.2 85.6/85.1 99.9/99.9
10.6 m/s 99.9/99.8 99.8/99.7 92.3/92.7 90.4/89.5 100.0/100.0
10.9 m/s 99.8/99.8 99.6/99.6 91.7/90.8 87.0/86.8 100.0/100.0
12.3 m/s 98.8/98.8 98.3/98.3 80.8/79.7 81.4/81.0 99.8/99.8
14.2 m/s 99.8/99.8 99.9/99.9 95.9/96.0 76.7/76.5 99.9/99.9
16.0 m/s 99.1/99.0 99.1/99.0 94.2/93.8 86.5/86.6 100.0/100.0
16.3 m/s 97.9/98.1 97.1/97.6 73.4/74.3 86.1/83.6 99.9/99.9
17.0 m/s 99.5/99.5 99.5/99.5 85.3/85.8 86.2/86.5 100.0/99.8
18.0 m/s 90.0/63.8 81.5/56.1 61.1/60.1 78.5/77.4 76.4/78.1
18.9 m/s 100.0/99.9 99.9/99.9 91.9/91.1 97.3/96.8 100.0/100.0

Fig. 4. SM MFA model (blue) with training and validation data (red) at V ¼ 16:0 m=s.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. SM MSS model (blue) with training and validation data (red) at V ¼ 16:0 m=s.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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by the 45e50% higher VAF values and the models of U and u as
characterized by the higher VAF values of approximately 10e28%.
As to the performance of the DTM-LA form, which is compared to
that of a NARX-NN, the towermoment predictions,MFA andMSS, are
significantly better than those of SM and DTM by both methods.
Although ELGP and NARX-NN show nearly identical prediction
capability in all cases, they differ in transparency (intelligibility), as
discussed next.
7.1. Model interpretation

ELGP maintains an archive of solutions that are nondominated
with respect to the objectives of fitness and complexity during
identification for the purpose of providing less complex and
possibly more general alternatives to the best training solutions.
Previous research has suggested that models with physical insight
normally reside along the edges of the Pareto set, where a small
increase in complexity could result in large improvement in esti-
mation accuracy [31]. We observe this phenomenon in our results,
as shown in several of the archives in Figs. 8e11, with “n” being a
placeholder for all constants.
7.1.1. Local models
We find that the low complexity models in the archives often

identify basic relations in the closed-loop system. For example,
consider the local models created by ELGP as illustrated in
Figs. 8e10, which show the models on the Pareto front of the ar-
chives. The first figure, Fig. 8, corresponds to the models of u in SM
form in below-rated operating conditions where the torque control
strategy is TG ¼ ku2. Low-complexity solutions include u ¼ n

TG
,

which is the analytical solution to the power law P¼uTG when P is
constant, and u ¼ ðn� TGÞTG ¼ nTG � T2

G , which in the absence of
square root or exponent operators, bears some resemblance to the
Taylor series approximation for square root: asffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
z1þ 1

2 x� 1
8x

2, characterizing the relationship u ¼ n
ffiffiffiffiffiffi
TG

p
.

The basic closed-loop relationship between u and b is also identi-
fied in DTM form in above-rated operation, as shown in Fig. 9; in
this case, a low-complexity model on the edge of the Pareto set is
uk ¼ n(uk�1 þ (b�bk�1)), which describes the proportional control
effort of b with respect to u and generalizes better than more
complex models. The archives of local power models also contain
process physics, as shown in Fig. 10. The relation P ¼ uTG occupies
the elbow of the curve, with slight variations of this increasing
model accuracy at the cost of complexity. An interesting solution
scales the power law by a nonlinear function of the wind distur-
bance: P¼uTG/sin(eV/n).

We are able to draw two main insights from the local model
archives. First, the feature selection property of GP results in local
models that describe the local closed-loop systemwithout inactive
control input variables. This is evident in the comparison of the



Table 3
Comparison of global models generated by ELGP (SM, DTM, DTM-LA), two linear system identification methods (multiple regression, ARX), and a neural network (NARX-NN).
The one-step prediction models (DTM-LA and NARX-NN) are grouped on the right. The best method for each case is in bold.

Training/Validation VAF (%)

SM DTM Multiple regression 20th-order ARX DTM-LA NARX-NN

U 98.4/96.9 98.7/98.7 91.9/91.9 71.0/71.0 100.0/99.9 99.9/99.8
u 97.8/98.4 98.6/98.6 92.0/91.9 69.0/69.0 100.0/99.9 99.9/99.8
MFA 76.0/76.1 74.2/74.4 31.5/32.2 25.6/25.6 98.7/94.9 98.6/94.9
MSS 69.5/69.6 72.7/72.2 19.6/20.4 0.0/0.0 97.6/89.9 97.3/90.6
P 99.9/99.9 99.9/99.9 99.7/99.7 99.6/99.6 �/� �/�

Fig. 6. Comparison of the global U SM model (blue) and combined training and vali-
dation data (red). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Comparison of the global DTM-LA MFA model (blue) and combined training and
validation data (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Pareto archive of SM models of u at V ¼ 9:5 m=s.

Fig. 9. Pareto archive of DTM models of u at V ¼ 18:0 m=s.
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below-rated models of u (Fig. 8) that depend mostly on TG and the
above-rated models (Fig. 9) that depend mostly on b. Second, the
appearance of the control strategies in the low-complexity models
of the archive indicates that the closed-loop dynamics exhibited by



Fig. 10. SM Pareto archive of P at V ¼ 7:1 m=s.

Fig. 11. DTM Pareto archive of global models of U.
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thewind turbine are in some cases heavily defined by the controller
behavior.
7.1.2. Global models
Performing the model search globally has the advantage of

testing candidate models across control regimes that vary in their
relation to the turbine behavior; this may help distinguish the
behavior of thewind turbine from the changing relations governing
the inputs. Indeed, we find that the global DTM and DTM-LA
models are generally more dependent on several inputs,
including their previous outputs and V, which indicates that the
behavior of the plant is more uniquely identified. For example,
Fig. 11 shows the Pareto archive of U from global identification. The
final model shown is a nonlinear function of Vk�1, bk�1, TGk�1

, and
Uk�1. It contains the same term sin(eV/n) found in the local power
models, suggesting that this may be a concise way for models to
represent the nonlinear response of outputs to V.

The global identification of P converges within eight generations
on the power law, P ¼ uTG, which remains the most accurate global
model found of any complexity. Interestingly, the success of the
linear predictions of P in Table 3 can be understood using the
archive of global P solutions that contains only two nondominated
solutions: P ¼ nTG and P ¼ nTGun. Hence, the ELGP archive contains
a linear model of power based on TG that has approximately the
same VAF value as the linear models (99.2%). Note that the ELGP
models are more parsimonious than those generated by the linear
methods due to feature selection.

The results in Table 3 show that the ELGP method is able to
produce one-step look-ahead models that are as accurate as those
produced by a black-box neural network model. Compared to the
NARX-NN models that are undecipherable, those generated by
ELGP are quite succinct:

~Uk ¼ ~Uk�1 � sin
�n1
t

�
sin

 
n2 ~Vk�1

~TGk�1

~Uk�1ðbk�1 þ n3Þ

!
(14)

~MFAk
¼ ~MFAk�1

þ n1 sin
�
~TG
��e€xFA � e€xFAk�1

�.
~V (15)

~MSSk ¼ ~MSSk�1
þ n1 sinðn2jÞ

�e€xFA � e€xFAk�1

�
(16)

Note that ð~,Þ denotes the scaled variables. In each case the
model consists of the summation of the previous output and a
compact nonlinear function. For the tower moment cases, the
nonlinear component contains the change in fore-aft acceleration
of the tower top ðe€xFA � e€xFAk�1

¼ De€xFAÞ, which is an intuitive result.
Interestingly, the model forMSS decomposes De€xFA into its sideeside
component using the yaw angle, i.e., sin(n3j), rather than using the
measurement of e€xSS. This may indicate that e€xFA is more reliably
measured than e€xSS.

8. Discussion

The local and global models obtained by ELGP using EMO
demonstrate the potential for the succinct resultant models to
enhance the understanding of the characteristics observed from a
process. We have shown that the models are transparent enough to
link process estimation to understandable model components
(Eqns. 14e16) and accurate enough to shed light on the character-
istics of the closed-loop behavior of the system. Furthermore, by
studying the archive we are able to see how specific increases in
complexity affect the model's estimation capacity. In general, the
models do not suffer from overfitting (with some exceptions, e.g.,
Fig. 9 and the DTM-LA tower moment models). This may be due to
the way inwhich the validation set is chosen or be a property of the
model forms that are discovered.

The produced models hold a utility beyond process insight.
There is clearly a need for high-fidelity local models of wind tur-
bines for control design [32]. The models can be used directly in a
model predictive control system, or linear models of the wind
turbine at different wind speeds can be derived if the control design
process requires them. These models could be generated from the
global nonlinear models by several approaches. One approach is to
linearize the model forms analytically; another is to build auto-
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regressive models from the output of the nonlinear model in quasi-
linear operating regimes. Deriving the linear models directly from
the predicted output of the model may provide more flexibility in
choosing the structure of the linear model. Even the static models
may be utilized as a target for the transformation to a set of local
linear dynamic models.

A direct comparison to previous CART3 identification results is
difficult given the difference in operating conditions and assump-
tions, although the results here compare well to those previously
published [33] that use perturbance injection. It is likely that the
results could be further improved if persistent excitation signals
were used or the model formulations were higher than first order.
However, we have shown that accurate models can be obtained
even with the limited experimental setup we employ. We have
chosen to use these restrictions to make the results relevant to data
collected fromwind turbines during regular operation, which is far
more common, and requires less expertise to obtain. The limited
assumptions regarding the aerodynamic properties of the turbine
broadens the applicability of the work to poorly characterized
turbines as well. In terms of computation time, this approach is
more efficient than standard GP but incurs a higher cost than linear
methods. Typical runs over the global data for DTM model training
require several hours to converge. Fitness estimation methods [34]
can assist in scaling as the dimensionality of the data set increases.

9. Conclusion

In this work we use a novel symbolic regression system in an
evolutionary multiobjective optimization framework to identify
compact models of a wind turbine from operating data with minor
assumptions. The models are not only accurate, but succinct and
intuitive, and have been shown to embody process knowledge in
several instances. This method of system identification may be a
promising middle ground between conducting computationally
expensive physics simulations and using black-box models since
the models evaluate quickly while still capturing the intelligible
system behavior. In the future we plan to fully characterize how the
sets of assumptions about the aerodynamic properties of the tur-
bine and the operating conditions change the fidelity of the iden-
tified models.

As wind turbines continue to grow in size and flexibility and
begin to move offshore onto floating platforms, we expect data-
based modeling of wind turbine behavior to become an even
more integral part of the design and research processes. The use of
intelligible modeling methods can help catalyze expert knowledge
of turbine behavior in response to combined wind and wave
loading. Even small gains in power capture of utility-scale wind
farms can result in large financial gains, and therefore it is crucial to
improve the power capture as well as the lifetime andmaintenance
of these machines. For this reason, we expect that data-based ap-
proaches such as this one are key to continuing the success of wind
energy technology worldwide.
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